基于立体视觉的光谱聚类算法在目标识别中的研究
摘要:为了降低伪目标引起的误检率,提高系统在复杂环境中的目标识别能力,设计了一种基于立体视觉分析的光谱聚类算法,该算法在结合待测目标几何特性的基础上完成光谱聚类分析,从而实现通过立体视觉作为边界条件的方式消除伪目标的干扰。实验采用TEL-2000型成像光谱仪采集的目标区域图像作为样本与检测数据,分别对不同条件下的目标光谱特征值、非目标光谱特征值以及相关系数进行检测分析,对比目标与伪目标的识别效果。结果显示,目标光谱特征参数个数越多,目标检出概率越大,但伪目标误检概率也较大;非目标光谱特征参数越多,伪目标误检概率越小,但目标检出概率降低;当u=6,v=4,η=0. 6时,识别效果最好。该算法能够保证高目标检出率时实现误检率的有效降低值。
注: 保护知识产权,如需阅读全文请联系激光杂志社