量子并行神经网络
摘要:本文在前期量子概率神经网络(QPrNN)的基础上,提出了一种物理可实现的量子神经网络,称为量子并行神经网络(QPNN).主要特点是基于量子神经元的激活机制,利用量子并行性跟踪所有网络状态来提高分类结果.与之前的研究相比,在网络各个中间层和输入层之间添加了连接,增加了量子神经网络的非线性表达能力,所以结构上可以向深层网络发展.由于QPNN独特的量子门性质,该模型在很多条件下对噪声不敏感,涵盖了相位偏移和幅值翻转噪声.QPNN的另一个优势是可以作为内存使用,不但可以像经典内存一样存取数据,还可以作为生成模型,产生新数据.在实验验证部分,本次研究选取了两个标准的例子,MNIST手写体识别和Cifar-10来验证其测试误差.实验结果表明,QPNN只需采用经典神经网络3%左右的神经元资源即可超过相对应的全连接前向神经网络.与QPrNN相比,MNIST的分类测试准确率提高了0.2%;Cifar-10测试准确率提高了3%.同时,MNIST的正确取回概率平均提高了2%.
注: 保护知识产权,如需阅读全文请联系计算机学报杂志社