加急见刊

有限差分法中几何守恒律的机理及算法

刘君; 韩芳; 夏冰 大连理工大学航空航天学院; 辽宁大连116021

摘要:采用有限差分法求解复杂外形物体绕流场时经常进行坐标变换,由此会引入坐标变换系数等几何参数,采用不同的差分格式离散坐标变换系数得到的结果不同,导致在计算过程中可能出现均匀流场不能保持均匀的现象,消除这种误差需要研究几何守恒律.本文对坐标变换过程进行理论分析,发现坐标变换过程中采用的数学恒等式在离散条件下不再成立,这是引起物理量不守恒的本质机理,认为增加坐标变换系数恒等式作为源项的方程形式才是曲线贴体坐标系下的离散等价方程,提出只要源项和对流项的离散格式相同就能满足几何守恒律的构造准则.按照上述理论准则建立了基于离散等价方程的几何守恒律算法,通过AUSM、HLLC、Roe、VanLeer四种分裂格式的算例,表明这种新的几何守恒律算法适用于通量差分裂格式(Flux-Difference Splitting,FDS)和矢通量分裂格式(Flux-Vector Splitting,FVS),且均能消除由坐标变换(包括网格运动)引起的误差,保持流场的均匀特性.

注: 保护知识产权,如需阅读全文请联系空气动力学学报杂志社