加急见刊

基于双马尔可夫链的SMC-CBMeMBer滤波

刘江义; 王春平; 王暐 陆军工程大学石家庄校区电子与光学工程系; 河北石家庄050003; 中国人民解放军65875部队; 陕西渭南714000

摘要:大部分多目标跟踪滤波器都是假设目标及其量测符合隐式马尔可夫链(hidden Markov chain,HMC)模型,而HMC模型隐含的独立性假定在很多实际应用中是无效的,双马尔可夫链(pairwise Markov chain,PMC)模型相对于H MC模型更具有普适性。已有的基于PMC模型的势均衡多目标多伯努利(cardinality balanced multi-target multi-Bernoulli,CBMeMBer)滤波的高斯混合实现仅适用于线性高斯系统,针对基于PMC模型的非线性多目标跟踪系统,将每一条假设航迹的伯努利随机有限集用一组加权粒子来近似,提出了基于PMC模型的势均衡多目标多伯努利滤波的序贯蒙特卡罗(sequential Monte Carlo,SMC)方法实现(SMC-PMC-CBMeMBer)滤波。仿真实验结果验证了SMC-PMC-CBMeMBer算法的有效性,在基于PMC模型的非线性多目标跟踪系统中,SMC-PMC-CBMeMBer算法性能优于基于HMC模型的SMC-CBMeMBer滤波器和基于PMC模型的SMC-PHD滤波器。

注: 保护知识产权,如需阅读全文请联系系统工程与电子技术杂志社