基于VMD和FCM聚类方法的电网负荷分类
摘要:针对电网数据提取中存在负荷特征不够显化导致负荷聚类精准度降低的问题,提出基于变分模态分解(variational mode decomposition,VMD)和模糊C均值聚类(fuzzy C-means,FCM)的电网负荷特征分类方法。利用VMD提取负荷特征,将负荷曲线转化为多个本征模态函数(IMF)曲线,并通过数据重构得到特征显化的合成曲线,以此提高FCM聚类函数收敛速度和聚类精准度。同时分析不同聚类中心数与本征模态数下的聚类指标结果,为选取最优的本征模态数提供参考。最后以某市电网夜间负荷数据为例,文中所提方法与传统FCM方法相比,聚类指标最多减小0.0224,提高了聚类精准度。
注: 保护知识产权,如需阅读全文请联系东北电力技术杂志社