加急见刊

基于神经网络的有机朗肯循环过程及循环性能计算方法

王羽鹏; 梁俊伟; 罗向龙; 李逸帆; 陈健勇; 陈颖 广东工业大学材料与能源学院; 广东广州510006

摘要:有机朗肯循环(ORC)是中低温热能-电能转换中最具前景的技术之一,近年来受到越来越多的关注。工质是ORC实现的载体,由于热源及可选工质的多样性,工质筛选及系统的优化对于提升ORC综合性能非常重要,而物性及过程特性的准确预测是关键。提出了基于神经网络-基团贡献法的ORC系统性能计算方法,建立了涵盖11个基团的基团表,从REFPROP中调用51种工质7958组数据进行神经网络训练,获得了ORC中各个热力过程能量转换和熵差的计算关联式。计算了21种常用工质在1584组工况下的ORC系统性能,并与基于传统方法计算的ORC系统性能参数进行了对比。结果显示预测得到的ORC系统热效率、净输出功和系统㶲效率与用REFPROP计算得出的结果相比误差分别为1.01%、1.02%和1.61%,相比传统方法,预测精度有显著提高。

注: 保护知识产权,如需阅读全文请联系化工学报杂志社