加急见刊

基于支持向量回归机的数控机床几何误差元素建模研究

周恒飞; 叶文华; 郭云霞; 梁睿君; 章婷 南京航空航天大学机电学院; 南京210016

摘要:针对数控机床几何误差元素建模时面临的误差样本数据少且呈非线性的问题,研究在小样本数据集非线性回归分析中具有独特优势的支持向量回归机,并基于此建立数控机床几何误差元素的预测模型。分析现有几何误差检测中常用的九线法所存在的测量选点难和计算累积误差等问题,提出增加每条测量线垂直方向直线度的测量和修正误差项计算模型的改进方法。以高斯径向基核函数为支持向量回归模型的核函数,运用交叉验证法,选取合适的模型参数,求解凸二次规划问题,进而建立几何误差元素的预测模型。以QLM27100–5X五轴龙门机床X轴为例,基于改进的九线法进行测量辨识得到几何误差样本数据,然后分别基于支持向量回归机和最小二乘法建立几何误差元素预测模型,对比两个模型的预测精度,结果显示,前者的预测均方差值MSE为0.0238,小于后者的0.072,验证了支持向量回归模型在小样本集下具有更高的预测精度。

注: 保护知识产权,如需阅读全文请联系航空制造技术杂志社