无线通信系统维护检测平台设计研究
朱寅锴 2020-12-04
摘要:介绍了FHSS(跳频展频)技术的特点,分析了采用THSS技术的CBTC(基于通信的列车控制)车地无线通信系统实际应用中存在的问题,提出了针对FHSS制式车地无线通信系统的维护建议,并提出了相应的维护检测平台设计方案。
关键词:城市轨道交通;FHSS;车地无线通信;维护检测
城市轨道交通信号系统是集行车指挥和列车运行控制为一体的非常重要的机电系统,直接关系到城市轨道交通的运营安全、运营效率和服务质量。上海轨道交通信号系统均采用了CBTC(基于通信的列车自动控制)技术,其中一部分的CBTC制式是采用FHSS(跳频展频)技术。对于采用IEEE802 .11FHSS技术的CBTC车地无线通信系统,目前国内及国际上均没有测试仪表和工具能对其无线性能进行有效检测,从而导致在工程建设中无法便捷地对采用FHSS技术的车地无线通信系统的无线性能进行验收测试,在运营维护期间无法便捷地进行维护和故障诊断。因此,针对FHSS制式的车地无线通信系统维护检测平台的研究是非常必要的。
1FHSS技术特点
目前上海在建和新建的轨道交通CBTC信号系统中,部分线路采用了FHSS技术。FHSS技术是IEEE802 .11 初期采用的一种技术,其工作频段为2 .4GHz,共使用79 个信道,每个信道带宽为1MHz。采用FHSS技术的CBTC信号系统,在通信过程中其载频会不断地跳变,因此能提高其抗干扰能力。但同时,由于载频不断变化,因此很难对其无线信号进行跟踪,从而对其无线性能质量进行评估缺乏有效的手段。
2 用户面临的实际问题
全国范围内已经有多条地铁线路的CBTC车地无线通信系统使用了FHSS技术。也遇到过由于缺乏FHSS技术性能质量评价手段,而难以对故障进行检测和诊断的问题。主要表现在:① 虽然出现大量的车地通信数据包故障,但是无法找到具体原因和位置,单纯依靠检查轨旁设备和车载设备的工作状态均未发现异常;② 在某些疑似故障区段进行定点长时间检测却未发现异常。经过前期调研和技术分析,在出现CBTC车地无线通信故障的线路上密集布放AP(无线接入点),且有双网冗余覆盖。监测发现轨旁AP和车载设备的工作状态均很稳定,理论上接收到的无线信号应该也是稳定的,这与用户反映的问题不符。使用频谱仪对线路现场进行测量后得到的频谱图如图1 所示。从图1 中可以看出,对于FHSS的跳变信号,普通频谱仪无法区分信号来源,也无法给出具体某个车地无线链路的连续场强,很难判断其信号的覆盖质量。通过对FHSS设备进行研究发现,其车载设备具有监控接口,可以使用计算机串口与其连接;通过发送特定命令,可以查询当前设备所在无线网络的相关信息,其中就包括了场强信息和漫游状态信息。因此,可以利用连续查询的方式,采集这些关键参数,来帮助分析无线网络的质量。对首次测试得到的信息进行后期的人工整理和分析,完成了无线场强覆盖图,并发现了问题的根本原因。图2 为根据首次测试采集数据完成的某线路无线场强覆盖图。经过整理的漫游状态信息见表1 。可以看出,车载设备在原关联轨旁AP场强较低时才向新的轨旁AP发起漫游,而列车所在区间的其他轨旁AP的场强远高于原AP,这导致的结果是漫游次数比较少,但每次漫游前的一段时间,列车均在与场强较差的AP保持通信。由此判断导致该问题的原因可能是列车的车载AP设置的漫游门限值过低,导致漫游太晚。在讨论以后,测试人员调整了车载AP的漫游门限:Parameters:RoamingDecisionRSSIThreshold=60 →85JoiningDecisionRSSIThreshold=76 →90 然后进行了第二次动态测试。图3 为根据第二次测试采集数据完成的无线场强覆盖图。经过整理的漫游状态信息见表2 。可以看出,经过调整,车载设备的漫游次数增加了;在发现轨旁AP场强轻微减弱时,车载设备就漫游到了无线覆盖质量更好的临近AP,保证了车地无线通信始终工作在较强的无线网络环境里。借助FHSS车载设备的监控端口,采集到了FHSS制式无线网络的关键参数,并依靠这些关键参数成功解决了用户的实际问题。最终确认车地无线网络的丢包率从原来的5 .7%减少到0 .3%,成功解决了丢包率高的问题。
3FHSS制式车地无线通信维护建议
通过以上案例可以认为,为了达到对FHSS制式车地无线通信系统的性能质量进行检测评估和故障诊断的目的,可以设计一个维护检测平台用以针对CBTCFHSS制式车地无线通信系统进行检测评估,其主要技术能力应包括无线性能测试和网络性能测试两个部分。
4 维护检测平台的设计构想
无线性能测试主要是对FHSS无线信号质量进行性能检测,这类检测的主要内容即为RSSI场强测试。该测试不仅包括了车载设备当前所在服务小区的场强值,也应包括相同时刻邻小区的场强值。同时,由于列车是在整个区间进行动态运行,必然存在车载设备在多个地面AP之间的连续切换漫游的情况,因此漫游切换成功率、漫游切换时间等技术参数的测试和评估也非常重要。网络性能测试主要是对FHSS制式车地无线通信系统作为地铁信号系统业务承载时工作能力的检测评估,这类检测的主要项目应包括IP网络丢包率、时延等技术参数的测试和评估。同时,如果能考察相同位置和区域里RSSI场强、漫游和网络性能的相应关系,则可以更加有效地确定无线性能质量,更加准确地找出问题,并提出有效的处理意见。最后,维护检测平台还应具备自动的数据处理能力,可以快速方便地实现数据回放、数据分析、报表生成等功能,较快地帮助用户将测试结果转化为检测分析和故障诊断的依据。维护检测平台的设计目标分解见表3 。维护检测平台的主要组成部分应包括:1)接口模块。主要包括测试配置模块,其主要作用是对维护检测平台设备的对外采集接口进行选择及参数配置(包括串口和以太网口)。串口的主要工作是与FHSS车载设备的监控端口互联,以太网口的主要工作是与CBTC车载网络设备的网口互联。2)检测模块。①FHSS无线性能测试模块,其主要作用是与FHSS车载设备进行信令交互,以便快速查询和采集无线性能数据;② 网络性能测试模块,其主要作用是与CBTC车载网络设备连接,以便与地面服务器通信,进行网络性能的同步测试。3)数据处理模块。① 数据导入模块,其主要作用是将地面AP参数配置信息、检测模块检测到的原始信息导入测试数据分析模块,并进行必要的设定;② 测试数据分析模块,其主要作用是对测试原始数据进行处理分析,按照要求绘制曲线,分类统计;③ 结果导出模块,其主要作用是将测试数据分析模块绘制的曲线或统计的结论输出成文件。整个研究过程应该基本按照以上模块的功能设计,完成软硬件的开发和整合,然后进行各模块的独立测试和协同测试,最终形成维护检测平台。
5 结语
CBTC信号系统车地无线通信系统的性能直接影响列车的安全、高效运行。本文着眼于对车地无线通信系统性能的检测,设计了一套集采集、测试、分析、结果输出于一体的针对CBTC的FHSS制式的维护检测平台方案,便于对信号系统工程建设质量进行有效判定,便于后期维护和故障诊断,以此满足工程验收及运营维护的需要。
[1 ]GASTMS.802 .11 无线网络权威指南[M].南京:东南大学出版社,2007 .
[2 ]樊昌信.通信原理[M].北京:国防工业出版社,1998 .