加急见刊

问题教学法在开放教育高等数学课中的应用

王惠书  2009-02-03

摘要: “问题式”教学是一种以问题为本的教学形式, 它主要是教师引导学生创造性解决问题的过程。在高等数学学习过程中, 给我们留下深刻印象的是不断地提出问题、研究问题、求解问题, 衡量我们学习数学的成效也主要通过解决数学问题的能力来评价。

关键词: 问题教学; 开放教育; 高等数学

一、“问题式”教学法的提出

建构主义理论的内容很丰富,其核心是:以学生为中心,强调学生对知识的主动探索、主动发现和对所学知识意义的主动建构(而不是像传统教学那样,只是把知识从教师头脑中传送到学生的笔记本上)。建构主义强调,学习者并不是空着脑袋进入学习情境中的。在日常生活和以往各种形式的学习中,他们已经形成了有关的知识经验,他们对任何事情都有自己的看法。即使是有些问题他们从来没有接触过,没有现成的经验可以借鉴,但是当问题呈现在他们面前时,他们还是会基于以往的经验,依靠他们的认知能力,形成对问题的解释,提出他们的假设。教学不能无视学习者的已有知识经验,简单强硬的从外部对学习者实施知识的“填灌”,而是应当把学习者原有的知识经验作为新知识的生长点,引导学习者从原有的知识经验中,生长新的知识经验。教学不是知识的传递,而是知识的处理和转换。教师应该重视学生自己对各种现象的理解,倾听他们时下的看法,思考他们这些想法的由来,并以此为据,引导学生丰富或调整自己的解释。这样一来,在教学中摸清学生的思想情况就成为我们知识处理和转换的强有力依据。如何把握学生的思想状况?如何根据学生已有知识来处理转换新知识呢? 我想“问题”是最好的帮手。

二、“问题式”教学法的特征

民主性、主动性、探究性、合作性、创新性是“问题式”教学的几个基本特征。在这种教学环境中教学打破了传统的以教师为中心惯例,要求师与生之间,生与生之间平等的对话,和谐发展。“问题式”教学是一种以问题为本的教学形式,它主要是教师引导学生创造性解决问题的过程。所以它发端于问题,行进于问题,终止于问题。学生对问题产生困惑并产生求解过程的强烈愿望,是问题式教学的前提。正是由于问题激发学生去观察、思考,他们在教学过程中才能表现出能动性、自主性、创造性,积极探索问题的解决方案,并力图克服一切困难,发展其创造性人格。这就对教师提出了很高的要求,教师应善于从教材中发现问题,创设积极的问题情景,也就是在课堂教学中设置一种具有一定的困难,需要学生努力克服,而又是力所能及的学习任务,又是教学过程发展的动力。因此,问题情景的创设成为教师进行问题式教学的关键环节。

三、高等数学教学中使用“问题式”教学法的必要性

在高等数学学习过程中,给我们留下深刻印象的是不断地提出问题、研究问题、求解问题,衡量我们学习数学的成效也主要通过解决数学问题的水平来评价。因此,在数学活动中问题以及问题解决是极为重要的。我们学习的数学是由概念、定义、定理、公式、公理、定理等组成的知识系统,数学知识体系展开的基本形式是不断地提出数学问题,并在相继地解决问题的过程中逐步建构起来和精心组织起来的。教师可以逆向地超越现实的时间和空间,说明在以往条件下事件发生的状况和特点,揭示认识主体的意图、目的、思想与抉择等进程的信息,同时与学生共同探求数学对象的特性、关系结构和规律。学生是在主动参与问题的提出和解决的活动中获取知识、发展数学的。

数学对象来源于实践,但又不同于客观世界的具体事物,而是对它们从量的侧面某些本质特征进行抽象化、形式化、模式化,并在这个过程中对它们进行研究。这一过程本身促使个体的思维水平经由直观动作思维阶段、直观表象思维阶段、抽象思维阶段向辩证思维阶段发展。数学问题应适当增加来自现实生活的实例,有利于启发学生对数学知识价值的认识,进而认识到数学活动本身所具有的社会价值,激励学习的内部动力。

电大开放教育学员学习高等数学存在基础知识薄弱、记忆力差、水平参差不齐,逻辑推理和抽象思维能力与普通高校学生相距甚远,这无疑为高等数学这样一门高度抽象、逻辑严谨的课程的教学工作带来一定的困难。但是他们大多有一定的生活、工作经验,善于观察,重视学以致用。因此,在高等数学教学过程中,必须扬长避短,在教学过程中要自始自终贯彻这样一个基本思想,那就是:数学源于生活,其认识过程是沿着“从简单到复杂,由有限到无限,从宏观到微观,由感知到感悟。”逐步形成其理论体系,并最终应用于实践,解决实际问题。

四、高等数学课程“问题式”教学法案例

下面以“导数”知识为例来说明“问题式”教学在高等数学课程中的应用。

(一)教学的总体设计

问题式教学法的实施步骤、组织形式、和学习结果用坐标

其中,实施步骤包括: 1. 提出问题2. 探求问题3. 解决问题4. 拓展问题5. 深化问题;相应的组织形式为: 1. 创设情景2. 自主学习3. 合作探究4. 巩固应用5. 反思小结。

导数知识学习过程可表示为:实例=>导数知识=>导数应用,在这个过程中导数知识是中心。应用问题式教学法的总体构思如下:首先,举出两个实例,提出问题并给出解决问题需要的已知知识和解决的思路;其次,通过自主学习合作学习得出导数的概念、基本公式、运算性质以及运算方法;第三,总结出利用导数解决实际问题的方法。

(二)组织实施步骤

第一步,创设情境提出问题:

实例1. 对一个喜欢吃巧克力的人来讲,有一个实验表明:吃一颗巧克力的总效用为35,吃两颗巧克力的总效用为60,吃三颗巧克力的总效用为75,吃四颗巧克力的总效用为80,吃五颗巧克力的总效用为75。由简单的观察和计算可知,从吃第一颗巧克力到吃第五颗巧克力,每多吃一颗巧克力它产生的效用增加量分别是25, 15, 5, - 5,呈递减的趋势,换句话说,如果吃了四颗巧克力后,再吃第五颗、第六颗的话总效用不但不会增加反而会减少,也就是说不再会得到更多的满足了。那么请问,换了你你会吃几颗巧克力?

实例2. 瞬时速率问题。已知物体的运动规律既路程与时间的函数关系S = S( t) ,求物体运动的瞬时速度。

第二步,自主学习探究问题:

1. 解决问题所用的已有知识:平均速度、平均变化率、极限;2. 解决问题的关键是什么:如何解决分母不能为0的问题; 3. 思路与方法是什么:先从一点扩充到一个区间,再让区间趋于一点。

第三步,合作学习解决问题:

1. 函数在一点导数的定义:略; 2. 导数的数量意义、几何意义、经济意义、物理意义:略; 3. 基本公式、运算法则:略。

第四步,反思小节深化问题:

1. 利用导数解决问题的思想方法; 2. 导数计算的题型及方法; 3. 可以利用导数解决问题的常见案例及解决方法。

五、“问题式”教学法结果分析

通过问题式教学在高等数学中的应用,笔者认为“问题式”教学法的精髓在于,教师通过不断地提出问题、分析问题、解决问题,激发同学们的学习兴趣,使他们带着问题去学习,在分析、解决问题的过程中学习新知识;同时,这种教学法也能提高同学们发现、分析、解决问题的能力。

“问题式”教学法比较适用于数学课程的教学,特别是开放教育中数学课程的教学。因为提高学生的学习兴趣是学习数学的首要问题,只要学生对课程的学习产生兴趣了,根据已有的知识,通过参加课程的多种学习形式,一定可以达到学习目的,掌握教学要求。

参考文献:

[1]朱桂华. 问题式教学方法及实践[ J ]. 邢台职业技术学院学报,2002, (4).

[2]肖为胜. 论问题式教学中的“问题”[ J ]. 大学数学, 2003, (6).

[3]柴维斯. 问题式教学法与自学能力的培养[ J ]. 中国高教研究,2001, (8).

下载