加急见刊

关于高职院校数学教学中渗透数学建模思想方法的思考与实践

钱小慧 张博 戴勇  2012-05-25

摘要:本文分析了高职院校开展数学建模教育的原因,讨论了在高等职业教育的数学教育中渗透数学建模思想方法的途径,并根据教学实践,介绍了在高等数学教学中渗透数学建模思想方法的一些实践。

关键词:高等职业教育数学教育数学建模

一、前言

随着社会的发展,数学在社会各领域中的应用越来越广泛,作用越来越大,不但运用于自然科学各学科、各领域,而且渗透到了经济、军事、管理以至于社会科学和社会活动的各领域。但是,社会对数学的需求并不只是需要数学家和专门从事数学研究的人才,更大量的是需要在各部门中从事实际工作的人善于运用数学知识及数学的思维方法来解决他们每天面临的大量的实际问题,取得经济效益和社会效益。他们不是为了应用数学知识而寻找实际问题(就像在学校里做数学应用题),而是为了解决实际问题而需要用到数学。对复杂的实际问题进行分析,发现其中的可以用数学语言来描述的关系或规律,把这个实际问题化成一个数学问题,这就称为数学模型,建立数学模型的这个过程就称为数学建模。

建立数学模型来解决实际问题的过程,也是我们的学生在走上工作岗位后常常要做的工作。做这样的事情,所需要的远不只是数学知识和解数学题的能力,而需要多方面的综合知识和能力。社会对具有这种能力的人的需求,比对数学专门人才的需求要多得多。特别地,高等职业教育的培养目标是为生产、服务和管理第一线培养实用型人才,根据这个目标,高职数学课程的教学应以突出数学的应用性为主。高职数学课程的一个重要任务,就是培养学生用数学原理和方法解决实际问题的能力。在高职院校中开展数学建模活动的出发点就在于培养高职学生使用数学工具、结合专业知识、运用计算机等解决实际问题的意识和能力。

二、高等职业教育对学生进行数学建模思想方法训练的途径 在高等职业教育阶段对学生进行数学建模思想方法的训练有两种途径:第一是开设数学建模课,这个途径受到时间的限制,对于高等职业教育更是如此,由于学制短,分配给数学课程的课时数较少,这对于我们要做的事情来说是非常不够的;第二个途径就是将数学建模的思想和方法有机地贯穿到传统的数学基础课程中去,使学生在学习数学基础知识的同时,初步获得数学建模的知识和技能,为他们日后用所学的知识解决实际问题打下基础。将数学建模的思想和方法融入高职数学教学中,是一种非常适合我国高等职业教育实际的一种教育方法。

三、在教学中渗透数学建模思想方法的实践初探

1、在日常教学中渗透数学建模的思想方法

高等数学中的函数、向量、导数、微分、积分都是数学模型,但在教学中也要选择更现实、更具体、与自然科学或社会科学等领域关系直接,同时有重大意义的模型与问题,这样的题材能够更有说服力地揭示数学问题的起源和数学与现实世界的相互作用,体现数学科学的不断发展,激发学生参与探索的兴趣,培养学生学习数学、应用数学的意识。

要重视高等数学中每一个概念的建立,数学本身就是研究和刻画现实世界的数学模型。在教学中,每引入一个新概念或开始一个新内容,都应有一个刺激学生学习欲的实例,说明该内容的应用性。在每一章节结束时,可列举与本章内容相联系的,与生产、生活实际和所学专业结合紧密的应用实例,这样在讲授知识的同时,可让学生充分体会到高等数学的学习过程也是数学建模的过程。

(1)重视函数关系的应用

建立函数模型在数学建模中非常重要,因为用数学方法解决实际问题的许多例子首先都是建立目标函数,将实际问题转化为数学问题。

在这一章中要重点介绍建立函数模型的一般方法,掌握现实问题中较为常用的函数模型。

(2)重视导数的应用

利用一阶导数、二阶导数可求函数的极值,利用导数求函数曲线在某点的曲率在解决实际问题中很有意义。在讲到这些章节时,适当向数学建模的题目引申,可以收到事半功倍的效果。例如,导数的概念可以从变速直线运动的瞬时速度、交流电的电流强度等实际问题抽象出来。导数的意义是函数相对于自变量的瞬时变化率,以此为依据,所有有关变化率的实际问题都可用导数模型解决,这也是利用微分方程建立模型的基础。传染病传播的数学模型的建立,就用到了导数的数学意义(函数的变化率);经济学中的边际分析、弹性分析、征税问题的例子都要用到导数。总之,在导数的应用一章中,适当多讲一些实际问题,能培养学生用数学的积极性。 (3)重视定积分的应用

定积分在数学建模中应用广泛,因此,在定积分的应用一章中,微元法以及定积分在几何物理上的应用都要重点讲授,并应尽可能讲一些数学建模的片段,要巧妙地应用微元法建立积分式。积分的概念可以从曲边梯形的面积、变速直线运动的路程等实际问题中抽象出来。积分的基本思想是“局部以直代曲取近似,无限分割求和的极限”,利用定积分解决问题的关键是求微元。利用定积分模型可以解决变力作功、不均匀细棒的质量、交通信号灯时间设置、商品存储费用优化等实际问题。运用数学建模法学习数学概念、公式、定理,使学生经历数学家研究创造时的思考过程,不仅有助于学生理解知识的本质意义,而且可以彻底改变学生认为数学无用的错误认识。

(4) 重视二元函数极值与最值问题的应用

求二元函数的极值与条件极值,拉格朗日乘数法,以及最小二乘法,在数学建模中有广泛的应用。在教学过程中,应注意培养学生用上述工具解决实际问题的能力。利用偏导数可以对经济学的许多问题作定性和定量分析。例如,经济分析中的边际分析、弹性分析,经济函数优化问题中的成本固定时产出最大化、产出一定时成本最小化等,都可以用偏导数来讨论。

(5)重视常微分方程的讲授,建立常微分方程的应用

解常微分方程是建立数学模型解决实际问题的有力工具。为此,在数学课程教学中,要用更多的时间讲解如何在实际问题中提炼微分方程,并且求解。

2、数学建模应与专业紧密联系,发挥高等数学对专业的服务作用

用专业知识作为背景,加工成数学模型,可使学生认识到数学在专业中的地位。这样既加深了对专业知识的理解,又培养了学生应用数学的兴趣。通过对一些以专业为背景、学生有能力尝试的问题的研究,把专业问题转化为数学问题,可以增加数学教学的目的性和凝聚力。对学生在建模过程中碰到的专业方面和数学方面的困难,教师要鼓励学生通过请教教师和查资料及时将要用到的知识补上。在强烈的学习愿望下,人的潜能是最容易被激发出来的。

[1]钟继雷 应用高等数学[M].哈尔滨:哈尔滨工程大学出版社,2007(9)。

[2]徐天华 高等数学教学中融入数学建模思想初探[J].阿坝师范高等专科学校学报,2006(9)。

[3]王积建 在高职院校开设“数学实验”选修课的设想[J].浙江工贸职业技术学院学报,2004(9)。

[4]李乔祥 论数学建模竞赛对提高学生综合素质的作用[J].高等理科教育,2004(1)。

[5]王庚 数学文化与数学教育[A].数学文化报告集[R].北京:科学出版社,2004。

[6]尚寿亭 等 数学建模和数学实验的教学研究与素质教育实践[J].数学的实践与认识,2002(31)。

[7]徐茂良 在传统数学课中渗透数学建模思想[J].数学的实践与认识,2002(4)。

[8]雷功炎 数学模型讲义[M].北京:北京大学出版社,2000。

[9]杨启帆 方道元 数学建模[M].杭州:浙江大学出版社,1999。

下载