智能建筑的节能及经济效益评估
顾增林 2006-03-03
摘要:本文结合宁波港务局北仑港区国际集装箱码头综合楼智能化工程实例,从建筑可持续发展战略、工程技术经济性分析等方面分析了智能建筑的节能问题,对节能效益评估内容与方法进行探讨,并提出了空调系统节能系数的计算方法。智能建筑的节能及经济效益评估
关键词:智能建筑 节能效益 1 商业建筑的耗能概况 据有关统计,写字楼和酒店等商业建筑中空调、照明、电梯等系统的耗能情况大致如下:①空调:写字楼空调耗能占总耗能的比例平均为60%,其下限为50%,上限不高于70%;酒店HVAC(热、通风和空调控制)耗能占总耗能的比例为44%。②照明:写字楼照明耗能占总耗能的比例为23%-55%,平均26%;酒店照明耗能占总耗能的比例为29%。③电梯:写字楼耗能占总耗能的比例为8%,酒店电梯耗能占总耗能的比例为10%。 2 智能建筑的节能措施 2.1 提高室内温湿度控制精度 室内温湿度的变化与建筑节能有着紧密的相关性。据美国国家标准局统计资料表明,如果在夏季将设定值温度下调1℃,将增加9%的能耗,如果在冬季将设定值温度上调1℃,将增加12%的能耗。因此将室内温湿度控制在设定值精度范围内是空调节能的有效措施。欧美等国对室内温湿度控制精度要求为:温度为±1.5℃,湿度为60±5%的变化范围。 传统的建筑由于没有采用楼宇自控系统,往往造成夏季室温过冷(低于标准设定值)或冬季室温过热(高于标准设定值)现象。这不但对人体的健康和舒适性来讲都是不适宜的,同时也浪费了能源。采用了楼宇自控系统的智能建筑,不仅可以按照设定自动调节室内温湿度外,还可以根据室外温湿度的和季节变化情况,改变室内温度的设定,使之更加满足人们的需要,充分发挥空调设备的功能。空调系统温度控制精度越高,不但舒适性越好,同时节能效果也越明显。 2.2 新风量控制 根据卫生要求,建筑内每人都必须保证有一定的新风量。但新风量取得过多,将增加新风耗能量。以上海地区酒店为例,在设计工况(夏季室外温26℃,相对温度60%,冬季室温22℃,相对湿度55%)下,处理一公斤室外新风量需冷量6.5kWh,热量12.7kWh,故在满足室内卫生要求的前提下,减少新风量,有显著的节能效果。 新风量应该根据室内允许CO2浓度来确定,CO2允许浓度值一般取0.1%(1000ppm)。采取固定新风量的方式是不够精确的,因为随着季节和时间的变化以及空气的污染情况,室外空气中CO2浓度是变化的,同时室内人员的变化自然对新鲜空气的需求也发生变化,所以最为合理的方式是根据室内或回风中的CO2浓度,自动调节新风量,以保证室内空气的新鲜度,控制功能较完善的楼宇自控系统可以满足这些控制要求。 2.3 机电设备最佳启停控制 对于办公和商场等建筑夜晚是不需要空调的,自然在夜里是不需要开空调,为了保证工作开始时室内环境的舒适,就需要提前对建筑进行预冷、预热,另外室内温度是惯性很大的被控对象,提前关闭空调也可以保证室内温度在一定的时间内变化不大,楼宇自控系统通过对空调设备的最佳启停时间的计算和控制,可以在保证环境舒适的前提下,缩短不必要的空调启停宽容时间,达到节能的目的;同时在预冷、预热时,关闭室外新风风阀,不仅可以减少设备容量,而且可以减少获取新风而带来冷却或加热的能量消耗。 在商业建筑中照明的能源消耗要占整个能源消耗的很大部分,其中公共照明最容易产生能源浪费,对这些照明设备实行定时开关控制,甚至按照作息时间和室外光线进行预程调光控制和窗际调光控制,可以极大降低能源消耗。 在实行多种电价的地区,利用楼宇自控系统,通过与冰蓄冷设备、应急发电机等配合,可以在用电高峰时,选择卸除某些相对不重要的机电设备减少高峰负荷,或投入应急发电机以及释放存储的冷量等措施,实现避峰运行,降低运行费用。 2.4 空调水系统平衡与变流量管理 空调系统的节能控制算法是智能建筑节能的核心,通过科学合理的节能控制算法,不但可以达到温度环境的自动控制,同时可以得到相当可观的节能效果。 空调系统的热交换本质是一定流量的水通过表冷器与风机驱动的送风气流进行能量交换,因此能量交换的效率不但与风速和表冷器温度对热效率的影响有关,同时更与冷热供水流量与热效率相关。通常在没有采用对空调系统进行有效的空调供水系统平衡与变流量管理时,常规的做法是以恒定供回水压力差的方式来设定空调控制算法,结果温湿度控制精度很差,能量浪费也是极其明显的。这是由于在恒定的供回水压力差之下,自平衡能力很差,流量值与实际热交换的需要量想差甚远,往往因而造成温湿度失控,能量浪费和设备受损。 通过对空调系统最远端和最近端(相对于空调系统供回水积水器而言)的空调机在不同供能状态和不同运行状态下的流量和控制效果测量参数分析可知空调系统具有明显的动态特点,运行状态中楼宇自控系统按照热交换的实际需要动态地调节着各台空调机的电磁阀,控制流量进行相应变化,因此总的供回水流量值也始终处于不断变化之中,为了响应这种变化,供回水压力差必须随之有所调整以求得新的平衡。应通过实验数据建立变流量控制数学模型(算法),将空调供回水系统由开环系统变为闭环系统。 2.5 克服暖通设计带来的设备容量冗余 目前我国绝大多数暖通系统,为了保证能在最不利的环境情况下正常运行,在设计时往往采用静态方法计算负荷,而且还乘以较大的安全系数,以至于在设备(如制冷机组、冷冻水泵、冷冻水泵、风机等)选型方面往往偏大。暖通系统是一个典型的动态系统,一年之中的负荷绝不是均匀分布的,即使是一天之中的负荷也是随时间而变化的。不恰当的冗余将会造成能源的浪费,而这种冗余是很难用人工监控的方式加以克服。由于智能建筑科学地运用楼宇自控系统的节能控制模式和算法,动态调整设备运行,有效地克服由于暖通设计带来的设备容量和动力冗余而造成的能源浪费。 2.6 能源管理系统的应用 开发能源管理软件,建立能源管理系统,实现能耗跟踪、节能的远程及就地控制。能源管理系统由各种计量仪表和软件程序组成。安装于各种基本的空调设备(如制冷机组、冷却水泵、冷冻水泵、风机等)上的计量仪表不仅可以在系统运行时采集该设备的适时运行原始数据,还可以协助中央控制器,在系统软件控制下,实现系统的节能运行。软件程序则是能源管理系统的中枢。 首先,由各种计量仪表采集的设备运行原始数据,通过数据传输通道传输到中央处理器,利用软件程序对其进行分析整理,从而建立系统高效低能运行数据库并集成在能源管理系统软件中,为以后的能源管理提供基本依据。 然后,在空调系统的运行过程中,各种计量仪表采集相应的运行数据传输给中央处理器,通过软件程序的对比分析,拟合出系统的运行曲线,从而判断系统是否处于节能运行状况。若发现运行异常,系统软件可根据采集的适时运行数据及所拟合的运行曲线,自动确定故障部位、发出声光报警信号,通知故障检测程序自动排障或指示设备管理人员人工排障。 此外,能源管理软件还可自动存储或打印设备运行数据和运行曲线,为后续的系统完善提供可靠资料。各种计量仪表也可通过显示屏直接显示运行数据,提高管理人员的节能意识。
系统
评价项目
评价测定内容
评价方法
空调系统
耗能量
耗电量、燃料耗量的测定
与同用途的其它建筑物比较与基准值比较
二次侧负荷分布
对代表二次侧负荷的量和变动的测定,把握热负荷的实态,研究设备系统有效利用的方法
与其它建筑物热负荷量比较
模拟二次侧负荷分布
根据实际的房间使用状态、设备工作状态进行负荷计算并对热源设备的容量验证
与其它建筑物的热负荷比较计算值与实测值的比较
冷热水、冷却水的温度、流量
调查系统是否处于健全的状态
与设计值、基准值比较
空调机的送风量、送风温度
调查输送动力的低减化
与室内实测数据对照,与设计风量比较
风量平衡
明确空调域和非空调域之间热量的传递
与不同用途的正压、负压要求对照
新风量
明确新风量的过量或不足
与设计值比较
风系统的阻力
风阀、盘管、过滤器、静压箱、弯头等部位实测阻力损失,探明阻力过大的原因
与基准值比较设计风量与实测风量的比较
水系统的阻力
盘管、阀门、过滤器、阀门开度等部位实测阻力损失,探明阻力过大的原因
与基准值比较设计水量与实测水量的比较
建筑电气
变压器的负荷率调查
变压器的集中和容量降低的可能性
以平均负荷率50%为标准
节电设备的利用
节能型变压器、电容器、照明器具、信号灯等利用的可能性
根据运行费的降低程度进行综合
合适的照度
各房间取若干代表点作照度测定
与规范比较
昼光利用可能性
有采光窗的房间中作白天消灯、减灯可能性调查
与规范比较
引导灯消灯可能性
引导灯消灯可能性调查
费用效果比评价
有可能用时间表控制的设备调查
根据运行记录和现场观察
根据运行费的降低额度进行综合评价
利用深夜电力可能性
热水器的用水量和需用热水的时间分布
根据运行费的降低额度进行综合评价
给排水
给水使用量
查明过剩用水量、用途不明的水量
与设计值比较,与同种用途的其他建筑物比较
给水水量、水压的测定
实测给水阀门的开度情况调查
根据测定结果进行校核,与设计值比较
供热水热源的效率
测定热水锅炉效率调查负荷率,确认锅炉节能措施
与竣工数据比较与新设备比较
供热水温度
测定热水供水温度,测定隔热材料传热系数
与末端容许最低温度比较
供热水量、供热水压力
测定末端供热水栓调查热水器具的使用率
与容许供热水量、水压的比较
供热水循环泵运行方法
研讨供热水循环泵的间歇运行化、部分热水供应的停止、切换到局部供热水方式
与正确循环量的比较
雨水利用的可能性
调查当地降雨量根据建筑物形态计算集水量
研究费用效果比