融合小波和LBP-GD特征的人脸表情识别
摘要:针对局部二值模式(LBP)不能描述纹理方向变化的问题,提出了一种融合了梯度方向的LBP-GD算子。LBP-GD算子不仅保持了LBP本身的优点,还可以细致刻画纹理的方向信息。由于人脸表情器官所蕴含信息的差异性,设计了一种不规则的分块方式,把图像分为9个互不重叠的子块并且设置不同的权值系数,然后提取每个子块的LBP-GD特征。最后,将LBP-GD特征与提升小波的低频分量特征加权融合,用K近邻方法进行分类。在JAFFE和Cohn-Kanade表情库上验证了该方法的有效性。实验结果表明,该方法比单独使用LBP-GD特征和提升小波特征具有更好的识别效果。
注: 保护知识产权,如需阅读全文请联系电子科技大学学报杂志社