加急见刊

心房颤动引起心房电重构机制的分子生物学研究进展

佚名  2006-01-26

摘要 心房颤动(AF)引起的心房电重构与离子通道、连接蛋白和血管紧张素及其受体的变化有关。本文旨在探讨AF引起电重构的离子通道、连接蛋白和血管紧张素及其受体变化的分子生物学基础。

关键词 心房颤动 电重构 离子通道 连接蛋白 血管紧张素 分子生物学

心房颤动(AF)是心律失常领域的热点,广大心电生理专家及临床心脏科医生对其发生机制、临床特点及进行了积极探讨,获得较多可贵的资料。近年来的研究发现,AF及快速心房起搏能引起心房电生理功能的改变,促使AF的发生和维持,这种现象称为心房电重构,现将其发生的分子生物学机制的近期资料综述如下:

1、 AF或快速心房起搏引起的心房电重构:

对AF或快速心房起搏引起的心房电重构有较多的研究资料。Morillo等[1]通过动物实验发现,以400次/分的频率起搏心房能引起持续AF,且AF引起的快速心房激动是AF引起心房电重构的基础。随后许多学者通过快速起搏心房的建立实验模型,来研究快速起搏所导致的心房电生理的变化,即心房电重构的特点。部分研究证实[2,3],AF能降低心房的有效不应期(AERP),AF发生数分钟AERP就会降低,但AERP的降低需持续数天致数周才恢复正常。根据Janse提出的多子波[4] ,AF的发生并维持是由多个子波共存于心房,这些子波围绕着处于不应期的肌束或肌小岛激动,每一个子波在播散过程中可能消失、分裂或与邻近的子波融合,从而使整个心房激动与收缩处于紊乱状态,所以发生AF。同时发现,AF的发生与维持与子波的数目有关,即在AF发生的心房中,其AF的发生与维持的基础是心房能容纳至少4-6个折返子波,否则AF不能发生或即使发生亦极易自行终止,而心房所能容纳的子波愈多AF亦愈易发生及维持。AF波长等于AERP乘以传导速度,所以AERP的缩短导致AF波长缩短,这样心房内所能容纳的子波数目增多,AF更容易形成和维持。

2、AF引起心房电重构机制的离子通道的分子生物学基础

2.1 AF的钾电流变化的分子生物学基础

钾离子通道是广泛存在、种类繁多、十分复杂的一类离子通道。在人心房肌存在的主要有瞬时外向钾电流(Ito)和持续外向钾电流(Iksus)及ATP依赖钾电流(ATP-dependent K+ current)。瞬时外向钾电流是动作电位复极早期出现的外向电流,分为两类:Ito1是复极1期的离子流,Ito2是依赖于肌浆网的Ca离子流。而在人心房肌细胞起主要作用的是Ito1。大量研究证实AF的发生与心房有效不应期的缩短是密不可分的[5,6]。从理论上讲,心房肌细胞复极相外向电流的增加才能导致AERP缩短。但周等人[7]发现AF患者心房肌细胞外向钾电流的两个主要成分Ito和Iksus在不同去极化电压下均较窦性心律患者明显减小。Van wagner等[8]亦发现慢性AF患者左、右心耳Ito的电流密度较窦性心律患者减少。这一矛盾结果是否有其依据呢?许等人[9]对AF患者Ito电重构的分子生物学基础进行了研究,他们逆转录-聚合酶链反应(RT-PCR)、免疫组化和免疫电镜方法检测窦性心律、阵发性AF、慢性AF患者右心耳组织电压依赖性kv4.3钾通道α亚基基因和蛋白进行半定量。发现阵发性AF及慢性AF的kv4.3αmRNA及蛋白的表达水平明显低于窦律组。而人类Ito1的主要编码基因是kv4.3α,所以kv4.3αmRNA及蛋白的表达水平明显降低较好的解释了AF电重构所导致的Ito1电流密度减少。那么,怎样解释kv4.3αmRNA及蛋白的表达水平明显降低与不应期缩短这一矛盾关系呢?Brudel等[10]认为AF时kv4.3钾通道基因和蛋白表达下调是机体细胞阻止心房肌电重构AERP缩短而引发的自身适应结果,是一被动过程。也就是说,心房肌电重构AERP缩短通过某种机制触发Ito1电流变化,以阻止AERP的缩短,具体机制仍不清楚。

等[1]发现,快速起搏犬的心房7小时后可见心房肌线粒体肿胀和肌浆网破裂,这是细胞内钙超负荷的特征性改变。Leistad等[11]发现急性AF的细胞内钙离子的含量增加1倍。Ausma等[12]研究发现山羊AF模型的心房肌细胞内质网和线粒体的钙明显增多。细胞内钙离子的过载导致钙离子内流减少,心房复极的平台期缩短或消失,所以心房复极时间及AERP亦缩短。目前的研究资料表明[13],尽管AF时心房电重构导致Ito1及L型钙电流的减弱,但真正引起AERP缩短的是L型钙电流的减弱,导致动作电位时程的2相平台期消失。对于钙离子通道电重构的分子生物学基础,张等人[14]采用RT-PCR法检测风湿性心脏病伴阵发性AF、慢性AF≤6个月和慢性AF>6个月患者心房肌L-型电压依赖钙通道α1c亚基的mRNA的表达,发现L-型电压依赖钙通道α1c亚基的mRNA在阵发性AF、慢性AF≤6个月和慢性AF>6个月患者心房肌上的表达均有不同程度的下降,尤其以AF>6个月患者心房肌上的mRNA下降最显著。Lai等[15]研究发现阵发性AF和慢性AF≤6个月患者心房肌上L-型电压依赖钙通道α1c亚基的mRNA表达无明显变化,而慢性AF>6个月患者心房肌上的表达L-型电压依赖钙通道α1c亚基的mRNA表达显著下降。因此认为,慢性AF>6个月患者心房肌上的表达L-型电压依赖钙通道α1c亚基的mRNA表达显著下降是IcaL重构的分子基础。而阵发性AF和慢性AF≤6个月患者心房肌IcaL下降不是源于钙通道基因的转录水平下降,可能与转录后调节异常和/或蛋白降解系统的激活有关,亦可能与L-型钙通道的电化学特性的变化有关。

2.3 钠电流变化的分子生物学基础

钠电流是普通心肌细胞的快速除极电流,也是心房肌细胞的快速除极电流。AF的发生与颤动波的波长的长短有密切关系,而波长是由传导速度和心房的不应期决定的。除极电流的大小是传导速度的一个重要因素,究竟钠电流在AF的发生起何种角色呢?Wijffels[5]研究发现,心房快速起搏后心房传导速度明显减慢,且单个心房肌细胞的钠电流减弱。而Yue[16]的研究亦得到类似结果,并且发现编码钠电流的基因及其通道蛋白的表达明显降低,且编码钠电流基因及其通道蛋白的表达降低与钠电流减弱相平行,所以他认为AF后的钠电流减弱是通道数量降低所致。而张等人[14]的研究同前述研究结果不一致,他们发现阵发性AF、慢性AF≤6个月和慢性AF>6个月患者心房肌上编码钠通道的基因与窦性心律相比没有明显差别。Brudel亦有相同报道,他发现编码钠通道的基因在阵发性AF和持续性AF患者的表达没改变。许多临床研究表明,AF患者复律后房内传导速度与窦性心律相比无明显改变,短阵心房快速刺激前后房内和房间传导速度无明显改变。Bosch等[17]对AF患者的心房肌细胞钠电流进行记录,亦没发现有钠离子流的减弱。

下载